ANNAMALAI

UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

ASSIGNMENT - I (2019-20)

BRANCH:

B.E. (CIVIL ENGINEERING)

SEMESTER:

COURSE CODE & TITLE: CEPC 406 STRENGTH OF MATERIALS

FOURTH

	PART - A	Marks	co	BTL	РО	PSO	
1	Prop means supported the beam by vertical pole at the original level before deflection – True / False	1	2	K1	1	1	
2	The beam having zero slopes at the ends is known as	1	2	K2	1	1	
3	Draw a figure showing propped cantilever beam.	1	2	K1	1	1	
4	Clapeyron's Theorem related to a) Moment distribution method b) theorem of three moments c) moment area method d) none	1	2	K2	1	1	
5	Max. shear stress for thin cylindrical shell = ?	1	4	K1	1	1	
6	According to the max. principal stress theory the max. principal stress shall not exceedfor the material.	1	4	K1	1	1	
7	In a principal plane, shear stress will be	1	4	K1	1	1	
8	1/m is known as	1	4	K1	1	1	
PART- B							
9	What are the methods available to analyse the indeterminate structures?	3	2	K1	1	1	
10	Draw the diagram showing deflection curve of a	3	2	K1	1	1	

10	Draw the diagram showing deflection curve of a continuous beam with 4 spans subjected to UDL.	3	2	K1	1	1
11	What do you understand by indeterminate structures?	3	2	K2	1	1
12	Write the advantages of fixed beams?	3	2	K2	1	1
13	Define principal stress.	3	4	K2	1	1
14	Write the maximum strain theory of St.Venant.	3	4	K2	1	1
15	Define principal strain.	3	4	K2	1	1
16	How do you find the maximum shear stress?	3	4	K2	1	1
17	How do you classify thin and thick cylinder?	3	4	K2	1	1

	PART- C					
18	Draw shear force and bending moment diagram for propped cantilever beam carrying central point load propped at the free end.	ra 10 and	2	K5	2 4	1 3
19	Derive the expressions for maximum deflection of a fi beam carrying central point load.	xed 10	2	K4	2 4	1 3
20	A rectangular block of material is subjected to a ten stress of 110 <i>N/mm</i> ² on one plane and a tensile stress 47 <i>N/mm</i> ² on a plane at right angle, together with sh stresses of 63 <i>N/mm</i> ² on the same planes. Find: i) The direction of principal planes ii) The magnitude of principal stress The magnitude of greatest shear stress	sile 10 s of ear	4	К3	1 2	1 3
21	A cylindrical drum 600 <i>mm</i> in diameter has to withstand internal pressure of 1. <i>N/mm</i> ² . Calculate the necess wall thickness for a factor of safety of 3 if the criterion failure is the max. strain energy and the elastic limit in p tension is 237 <i>N/mm</i> ² . Take Poisson's ratio 0.3.	lan 10 sary n of ure	4	K3	1 2	1 3

Note:

Total for 75 marks. (will be converted this for internal assessment)

ANNAMALAI

UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

ASSIGNMENT - II (2019-20)

BRANCH: B.E. (CIVIL ENGINEERING)

SEMESTER: FOURTH

COURSE CODE & TITLE: CEPC 406 STRENGTH OF MATERIALS

	PART - A	Marks	co	ВТL	РО	PSO		
1	If product of inertia (<i>I_{xy}</i>) of any area is zero about the axes then the axes are called a) principal axes b) rectangular axes c) parallel axes d) centroidal axes	1	5	K1	1	1		
2	Centre of twist is nothing but	1	5	K1	1	1		
3	The principal axes on which the product of inertia (I_{xy}) will be a) 1 b) -1 c) 0 d) ∞	1	5	K1	1	1		
4	Shear centre is also known as	1	5	K1	1	1		
5	Condition for the principal axes is - True / False $\tan 2\theta = \frac{2Ixy}{Iyy-Ixx}$	1	5	K2	1	1		
PART- B								
6	Define unsymmetrical bending.	3	5	K2	1	1		
7	What is meant by curved beam?	3	5	K1	1	1		
8	What is the importance of shear centre?	3	5	K2	1	1		
9	Write down the expression for Winkler-Bach formula.	3	5	K2	1	1		
10	What is meant by Shear Centre?	3	5	K2	1	1		
PART- C								
11	Write the expressions derived for determining the stresses in unsymmetrical bending.	10	5	K4	2 4	1 3		
12	Determine the position of shear centre for a channel section of 400 mm by 200 mm outside and 5 mm thick.	10	5	K4	2 4	1 3		

Note:

Total for 40 marks. (will be converted this for internal assessment)